# Calculation Policy: Y5

Mathematical Manipulatives | Key Representations

Progression in **Procedures** 



# **Avonwood Primary School**

The best in everyone<sup>™</sup>

Part of United Learning



# Key vocabulary

Place value: ones, tens, hundreds, column, ascending, descending, consecutive

Addition: sum, addend, add

Subtraction: difference, subtrahend, subtract

Multiplication: product, multiplicand, multiplier, multiply, repeated addition, composite number, multiple, product, factor

Division: quotient, dividend, divisor, divide, repeated subtraction, bisect, factor

Fractions: denominator, numerator, equal part, whole

Manipulatives: place value counters, Dienes

Representations: represent, representation, numberline, array, row/column, Part-Part-Whole diagram, bar model

# YEAR 5: Addition



# Manipulatives

The recommended manipulatives (physical resources) for adding numbers with more than 4- digits are **place value counters and Dienes.** This should build on prior knowledge.

| Th  | н   | Т        | 0   |
|-----|-----|----------|-----|
| 000 | 000 |          | 000 |
| 00  | 000 | 000      |     |
|     |     | <u>_</u> |     |

#### Representations

The key representations used are **place value grids, bar models and part-part-whole diagrams** (which encourage children to apply their knowledge of place value).





### **Factual knowledge**

The key factual knowledge includes recall of addition/subtraction facts to 100 and doubling/halving facts to 100 and Roman Numerals I-M.



# Procedural knowledge

The key methods is **formal column addition.** 



# Addition in Year 5

1. The recommended manipulatives (physical resources) for adding numbers with more than 4-digits are **place value counters and dienes.** 



- 2. The key representations used are: **part-partwhole diagrams and , bar models** (which encourage children to apply their knowledge of place value) and **place value grids**.
- 3. The key methods is **formal column addition.**







2

|   | Th | Н | Т | 0 |
|---|----|---|---|---|
|   | 4  | 3 | 5 | 6 |
| + | 2  | 4 | 3 | 5 |
|   | 6  | 7 | 9 | 1 |
|   |    |   | 1 |   |

### **YEAR 5: Subtraction**



### Manipulatives

The recommended manipulatives (physical resources) for subtracting numbers with more than 4-digits are **place value counters and Dienes.** 



#### Representations

The key representations used are **place value grids, bar models and part-part-whole diagrams** (which encourage children to apply their knowledge of place value).



### **Factual knowledge**

The key factual knowledge includes recall of addition/subtraction facts to 100 and doubling/halving facts to 100 and Roman Numerals I-M.



# Procedural knowledge

The key methods is **formal column subtraction.** 



# Subtraction in Year 5



2

- The recommended manipulatives

   (physical resources) for subtracting numbers with
   more than 4- digits are place value counters and
   dienes.
- 2. The key representations used are: **part-partwhole diagrams, bar models** (which encourage children to apply their knowledge of place value) and **place value grids**.
- 3. The key methods is **formal column subtraction.**



#### Dexter is using place value counters to calculate 5,643 - 4,316



|     |     | 8,435 |
|-----|-----|-------|
| 367 | 579 | ?     |

|   | Th | н | т | 0              |
|---|----|---|---|----------------|
|   | 5  | 6 | 3 | 1 <sub>3</sub> |
| - | 4  | 3 | 1 | 6              |
|   | 1  | 3 | 2 | 7              |

### YEAR 5: Multiplication



# Manipulatives

The recommended manipulatives (physical resources) for multiplying numbers with up to 4- digits are **place value counters and Dienes.** 





#### Representations

The key representations used are number lines, place value grids and bar models.

Rosie adapts the Base 10 method to calculate 44





### **Factual knowledge**

The key factual knowledge includes recall of all multiplication tables.



### Procedural knowledge

The key methods are grid method and formal column multiplication.





Key vocabulary: product, multiplicand, multiplier, multiply, repeated addition

# Multiplication in Year 5



- The recommended manipulatives (physical resources) for multiplying 4- digit numbers by 2digit numbers are place value counters and dienes.
- 2. The key representations used are: **bar model** and **place value grids**.
- The key methods are Grid method, and formal column method.

Annie earns £1,325 per week. How much would he earn in 4 weeks?





3

2

| ×  | 40    | 4   |
|----|-------|-----|
| 30 | 1,200 | 120 |
| 2  | 80    | 8   |



# **YEAR 5: Division**



# Manipulatives

The recommended manipulatives (physical resources) for Division numbers with up are place value counters and Dienes.



# Representations

The key representations used are bar models and part- part whole models.





# **Factual knowledge**

The key factual knowledge includes recall of all multiplication tables.





# **Procedural knowledge**

The key methods are **short division**.



Key vocabulary: quotient, divisor, dividend, divide, repeated subtraction

# **Division in Year 5**

- 1. The recommended manipulatives (physical resources) for dividing 4- digit numbers by 2- digit numbers are **place value counters and dienes.**
- 2. The key representations used are: **blank number lines** (to show the link with repeated addition), **and bar model**.
- 3. The key methods are **short division.**



|   | 1 | 2 | 2 | 3              |
|---|---|---|---|----------------|
| 4 | 4 | 8 | 9 | <sup>1</sup> 2 |
|   |   |   |   |                |



r2

2

4 8

1

4

2 3

9 <sup>1</sup>4



1

2

# **YEAR 5: Fractions**



# Manipulatives

The recommended manipulatives (physical resources) for fractions are **Cuisenaire**.



#### Representations

The key representations are number lines, PPW diagrams and bar models.





# Factual knowledge

The key factual knowledge includes the recall and recognition of **equivalent fractions** (whose denominators are multiples of the same number); writing **decimal numbers as fractions**.



### **Procedural knowledge**

The key procedures are **converting** between mixed numbers and fractions, **adding/subtracting** fractions with different denominators and **multiplying** fractions by integers.



Key vocabulary: denominator, numerator, equal part, whole, equivalent, ascending, descending, unit fraction, non-unit fraction, tenth

# Fractions in Year 5



2

- The recommended manipulatives (physical 1. resources) for fractions are Cuisenaire.
- The key representations are **blank number lines**, 2. part-part-whole diagrams and bar models.
- 3. The key procedural knowledge includes: counting in fractions on a number line, ordering fractions with the same denominator, **multiplying** fractions by integers.











Multiply:

